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Recap: Abstract Interpretation 

º Semantics-based approach to program analysis 

º Framework to develop provably correct and terminating 

analyses  
 

Ingredients: 

º Concrete semantics: Formalizes meaning of a program 

º Abstract semantics 

º Both semantics defined as fixpoints of monotone 

functions over some domain 

º Relation between the two semantics establishing 

correctness 
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Abstract Semantics 

Similar to concrete semantics: 

º A complete lattice (L#, Ò) as the domain for 

abstract elements 

º A monotone function F# corresponding to the 

concrete function F 

º Then the abstract semantics is the least fixed 

point of F#, lfp F# 

 

If F# ñcorrectly approximatesò F,  

 then lfp F# ñcorrectly approximatesò lfp F. 



Fixpoint Transfer Theorem 

Local Correctness 

Global Correctness 



An Example Abstract Domain  

for Values of Variables 

How to relate the two? 

 Č Concretization function, specifying ñmeaningò of abstract values. 

 

 

 

 Č Abstraction function: determines best representation concrete values. 

 



Relation between the Abstract and 

Concrete Domains 

1. Are these functions monotone? 

2. Should they be? 

3. What is the meaning of the partial order in the 

abstract domain? 

4. What if we first abstract and the concretize? 



How to Compute in the Abstract Domain 

Example: Multiplication on Flat Lattice 
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How to Compute in the Abstract Domain: 

Correctness Conditions 

Correctness Condition: 

Correct by construction 

(if concretization and abstraction have certain properties): 



How to Compute in the Abstract Domain 

Example: Multiplication on Flat Lattice 
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How to Compute in the Abstract Domain 

Example: Multiplication on Flat Lattice 
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How to Compute in the Abstract Domain: 

Correct by Construction 

Correct by construction 

(if concretization and abstraction have certain properties): 

 

 

 

 

 

 

 
 

ñCertain propertiesò: Notion of Galois connection: 



Galois connections 

Notion of Galois connections: 

Graphically: 

Why monotone? 

For soundness. 

For precision. 



Galois connections: Example 

with: 



Galois connections: Properties 

Graphically: 

Properties: 

1) Can be used to systematically construct correct (and in 

fact the most precise) abstract operations:  

2) a) Abstraction function induces concretization function 

     b) Concretization function induces abstraction function 

 

How? 

Why? 



How do abstraction and concretization 

induce each other? 

 



Why is                     a correct abstract 

operation? 



Why is                     the best correct 

abstract transformer? 

Could there not be multiple incomparable 

transformers? 



Think of an abstraction that does not admit 

a Galois connection! 




