>

Static Program Analysis
Foundations of Abstract Interpretation

Sebastian Hack, Christian Hammer, Jan Reineke

Advanced Lecture, Winter 2014/15



(0]

(0]

Abstract Interpretation

Semantics-based approach to program analysis

Framework to develop provably correct and terminating
analyses

Ingredients:

(0]

(0]

(0]

Concrete semantics: Formalizes meaning of a program
Abstract semantics

Both semantics defined as fixpoints of monotone
functions over some domain

Relation between the two semantics establishing
correctness



Concrete Semantics

D
Different semantics are required for
different properties: (1)
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O Concrete Semantics

o _o race Semantics: Captures set of traces of
. __._’ states that the program may execute.

J« o Input/Output Semantics: Captures the pairs of
?__Ai initial and final states of execution traces.

'./’ Abstraction of Trace Semantics

o Reachability Semantics: Captures the set of
reachable states at each program point

Abstraction of Trace Semantics



Reachability Semantics

Captures the set of reachable states at each
program point. Formally: Reach: V — P(States)
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O Reachability Semantics

Can be captured as the least solution of:
Reach(start) = States
Yo' € V' \ {start} : Reach(v') = U [labeling(v,v")](Reach(v))

veV,(v,vw)EFE

@ Reach(1) = [labeling(start, 1)](Reach(start)) U [labeling(2, 1)] ( Reach(2))
Reach(2) = [labeling(1,2)](Reach(1))
Reach(3) = [labeling(1 |)](Reach(1))

Reach(1) = [x = 0] (Reach(start)) U [x = x + 1] (Reach(2))
Reach(2) = [Pos(z < 100)](Reach(1))
Reach(3) = [Neg(x <@ach(l))

Reach(2) =|Reach(1) N {...,98,99}
Reach(3) =|\Reach(1) N {100, 101, ..

| Reach(1) =[{0}U{v+1|ve Reach(2)})




Questions

o

Why the least solution?

|s there more than one solution?
Is there a unique least solution?
Can we systematically compute it?

o

o

o

x=0

@—{Neg(x < 100)|—>®

[Pos(x < 100)]

X =x+1




Answers

o |s there more than one solution? Often
o |s there a unigue least solution? Yes
o Can we systematically compute it? Yes and No

x=0

@—{Neg(x < 100)|—>®

[Pos(x < 100)]

X =x+1




Why? Knaster-Tarski Fixpoint Theorem

THEOREM 1 (KNASTER-TARSKI, 1955).
Assume (D, <) is a complete lattice. Then every monotonic

function f : D — D has a least fixed point dg € D.

Raises more questions:

o What is a complete lattice?

o What is a monotonic function?
What is a fixed point?
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Monotone Functions

Let (D, <) be partially-ordered set.
For example: D = N and < the order on natural numbers.

Function f: D — D is monotone (order-preserving) iff
for all dl,dz ecD:di <dy = f(dl) < f(dz)

Examples:
flz) == /
glz)=—-z X
TLG) =—x—1 Which of these are monotone?

FX)={f(zx)|re X} X<VY
GX)={y|xe XA (x,y) € R}

Need to know what the order is.



Partial Orders

A binary relation <: D X D is a partial order, iff for all
a,b,c € D, we have that:

~Nat
e a < a (reflexivity),
e if a < band b < athen a =b (antisymmetry),

e if a < band b < cthen a < ¢ (transitivity).

A set with a partial order is called a partially-ordered set.



Partial Orders: Examples |

The natural numbers ordered by the standard less-
than-or-equal relation: (N, <).

The set of subsets of a given set (its powerset) ordered
by the subset relation: (P(A), Q).

The set of subsets of a given set (its powerset) ordered
by the subset relation: (P(A), D).

The natural numbers ordered by divisibility: (N, |).
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Partial Orders: Examples Il

The vertex set V' of a directed acyclic graph G = (V, F)
ordered by reachability (reflexive, transitive closure of
edge relation).

The vertex set V of an arbitr = (V,F)
ordere TTy.

For a set X and a partially-ordered set P, the function
space ' : X — P, where f < g if and only if f(x) <
g(x) for all x in X

What about@
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Complete Lattices

A partially-ordered set (L, <) is a complete lattice if every
subset A of L has both a least upper bound (denoted | | A)
and a greatest lower bound (denoted [ ]A). VA

/\
What is an upper bound of a set A? A

An element x is an upper bound of a set A if x if for every
element a of A, we have a < x.

What is the least upper bound (also: join, supremum) of a set A?

—

x is the least upper bound of A, denoted | | A, if
1. x is an upper bound of A,

2. for every upper bound y of A, we have x < .



Least Upper Bounds: Examples |

Partially-ordered set (D, <) ACD L|A|[]A
N, < {1,2,3} 7 7
(R, <) {xeR|x <1} T AT
R, < {zeR |z <1} [Sa el
(Q, <) (reQ|a?<2) W7 | 2
(N, <) {r e N|x isodd} | 7 ?

Which of these are complete lattices?

———




Least Upper Bounds: Examples Il

Partially-ordered set (D, <) ACD LA |[]A
PN,0)  ~ [(L2L@As] 7 |
(P(N).D) o | {L2h 24| 7 | 7

(N, |) {3,4,5} %00 7
(A—=N,<) {f,g9,h} [

\

Which of these are complete lattices?




Properties of Complete Lattices

Every complete lattice (D, <) has
e a least element (bottom element): L =| |0, and

e a greatest element (top element): T =| | D.



Generic Lattice Constructions:
Power-set Lattice

For any Se@ts power set (P(S),C) with set inclusion is

a lattice:

“oim”: | |]A = JA

“meet”: [|A = NA
“top”> T = S
“bottom”: L =

Graphical representation (Hasse diagram):




Generic Lattice Constructions:
Total Function Space

What about @



