The Structure of Compilers

The Structure of Compilers

Mooly Sagiv
Tel Aviv University
sagiv@math.tau.ac.il
and
Reinhard Wilhelm
Universitat des Saarlandes
wilhelm@cs.uni-saarland.de

14. Oktober 2013

Q>

The Structure of Compilers

Material from

Chapter 6 in Wilhelm/Maurer: Compiler Design, Pearson,

Chapter 6 in Wilhelm/Maurer: Ubersetzerbau, Springer, 2nd
edition, 1997

Chapter 1 in Wilhelm/Seidl/Hack: Ubersetzerbau, Vol. 2, Springer,
2012

Chapter 1 in Wilhelm/Seidl/Hack: Compiler Design — Syntactic
and Semantic Analysis —, Vol. 2, Springer, 2013

e
The Structure of Compilers
Subjects

» Structure of the compiler

» Automatic Compiler Generation

» Real Compiler Structures

The Structure of Compilers

Motivation

» The compilation process is decomposable into a sequence of

tasks.
Aspects:

» Modularity
» Reusabilty

» The functionality of the tasks is well defined.

» Some of the tasks have generic solutions, i.e., they work for
several source languages and/or target machines.

» The programs that implement some of the tasks can be
automatically generated from formal specifications

The Structure of Compilers

“Standard” Structure and implementing devices

(source(text)

)

| lexical analysis (7)

| finite state machine

i

(tokenized-program

)

| syntax analysis (8)

| pushdown automata

i

(syntax-tree

}

| semantic-analysis (9)

| attribute grammar evaluators

i

(decorated syntax-tree

!

| optimizations (10)

| abstract interpretation + transformations

(intermediate rep.

!

The Structure of Compilers
“Standard” Structure cont'd

:
'
C intermediate rep.)
1
| code-generation(11, 12) | tree automata + dynamic programming +
(machine-program)

acy

The Structure of Compilers

A Running Example

program foo ;
var i, j : real ;
begin
read (i);
Ji=i+3xi
end.

The Structure of Compilers

Lexical Analysis (Scanning)

v

Functionality

Input program text as sequence of characters
Output program text as sequence of symbols (tokens)

v

Read input file

v

Report errors about symbols illegal in the programming
language
» Screening subtask:

» |dentify language keywords and standard identifiers
» Eliminate “white-space”, e.g., consecutive blanks and newlines
» Count line numbers

The Structure of Compilers

Automatic Generation of Lexical Analyzers

» The symbols of programming languages can be specified by regular
expressions.

» Examples:

» program as a sequence of characters.
» (alpha (alpha | digit)*) for Pascal identifiers
> “(x¢ until “*)¢‘ for Pascal comments

> The recognition of input strings can be performed by a finite state
machine.

> A table representation or a program for the automaton is
automatically generated from a regular expression.

The Structure of Compilers

Automatic Generation of Lexical Analyzers (cont'd)

(regular—expression(s))

FLEX |

(input—program H (scanner-program) F’(tokenized—program)

Numerous generators for lexical analyzers: lex, flex, oolex, quex,
ml-lex.

The Structure of Compilers

Syntax Analysis (Parsing)

» Functionality
Input Sequence of symbols (tokens)
Output Structure of the program:

» concrete syntax tree (parse tree),
» abstract syntax tree, or
» derivation.

> Treat syntax errors

Report (as many as possible) syntax errors,
Diagnose syntax errors,
Correct syntax errors.

The Structure of Compilers

Parse Tree

PROGRAM
DECLIST STATLIST STAT
|
STATLIST
|
STAT
|
ASSIGN
~_
DECL E
| |
IDLIST T
—— |
IDLIST TYP F
| | |
var id()) com id(2) col int sem id(1) bec int('2") sem
| [[| | [| |
idC"var’) sep id(’a’) com id(’b") col id(’int”) sem sep id(’a’) bec int(’2") sem sep id("b’") bec id("a’) mul

id(2) bec idl) mul id1) add int('1")
[b

id('a’) add int('1") sem sep

(ol el LT Ll Jol ol el sl T 1T T [[af [=fofs T 1T I fel e elefal L LTTTLLTTT L o]

The Structure of Compilers

Automatic Generation of Syntax Analysis

» Parsing of programs can be performed by a pushdown automaton.

> A table representation or a program for the pushdown automaton is
automatically generated from a context free grammar.

(_context-free-grammar)

| BISON |

(tokenized-program) 1€ parser-program) abstract-syntax-tree)

Numerous parser generators: yacc, bison, ml-yacc, java-CC,
ANTLR.

The Structure of Compilers

Semantic Analysis

v

Functionality
Input Abstract syntax tree
Output Abstract tree “decorated” with attributes, e.g.,
types of sub-expressions

Report “semantic” errors, e.g., undeclared variables, type
mismatches
Resolve usages of variables:
Identify the right defining occurrences of variables for applied
occurrences.

Compute type of every (sub-)expression, resolving overloading.

The Structure of Compilers

Decorated parse tree

PROGRAM
DECLIST STATLIST STAT
STATLIST
\
STAT
\
ASSIGN
~__
DECL E
\ \
IDLIST T T
— \ \
IDLIST TYP F F
\ \ \ \
var id1) com id@ col it sem id1) bec in('2’) sem i@ bec id®) mul ad intC'1)

(var,int) int B int

(id(1),(var,int)) (var,int)
(id(2),(var,int))
(id(1),(var,int,0)) (var,int,0) (var,int,1)

(id(2),(var,int,0))

The Structure of Compilers

Machine Independent Optimizations

» Functionality
Input Abstract tree decorated with attributes
Output A semantically equivalent abstract tree decorated
with attributes
» Analyzes the program for global properties.
» Transforms the program based on these global properties in
order to improve efficiency.

» Analysis may also report program anomalies, e.g., uninitialized

variables.

The Structure of Compilers

Examplel: Constant Propagation

const / = 5;
var x,y : integer,
begin
x:=5+1i;
read y;
ifx=y
then y ==y + x
elsey =y —x
fi;
y:=y+xx*9
end;

o =] = = ¥ 9ac

The Structure of Compilers

Example2: Loop Invariant Code Motion and Reduction in

Operator Strength

const / = 5;
var n, x,y : integer;
begin
x:=5b+41
y =1
read n;
for k :=1 to 100 do
y:=y+kx(x+n)
od;
print y
end;

DAC

The Structure of Compilers

Address Assignment

» Map variables into the static area, stack, heap
» Compute static sizes

» Generate proper alignments

DA

The Structure of Compilers

Generation of the target program

Partly contradictory goals:
» Code Selection: Select cheapest instruction sequence.

» Register Allocation: Perform most or all of the computations
in registers.

» Instruction Scheduling: On machines with intraprocessor
parallelism, e.g., super-scalar, pipelined, VLIW:
exploit intraprocessor parallelism as much as possible.

» Partial problems are already NP-hard.

» “Good" solutions are obtained by combining suboptimal
solutions obtained by heuristics

The Structure of Compilers

Example: Local Register Allocation

» Try to perform all computations in registers:

» One register is sufficient for the (trivial) expression x; so
execute the command:

load rj, p(x)

> |If the expression e; takes m registers to evaluate and e, takes
n registers and m > n, then e; + e, takes m registers
(why?)

> |If the expression e; takes m registers and e, takes n registers
and m < n, then e; + e, takes n registers
(why?)

» What happens if m = n?

» What happens if there aren't enough registers?

The Structure of Compilers

Real Compiler Structure

» Simple compilers are “one-pass”; conceptually separated tasks
are combined.
Parser is the driver.

» One task in the conceptual compiler structure may need more
than one pass, e.g., mixed declarations and uses.

» Almost all use automatically generated lexers and parsers.
» Compilers use global information, e.g., symbol tables.

» There may be many representation levels in a multipass
compiler.

