
Global Value Numbering

Sebastian Hack
hack@cs.uni-saarland.de

17. Dezember 2013

computer science

saarland
university

1



Value Numbering

a := 2
x := a + 1

a := 3
x := a + 1

y := a + 1

Replace second computation of a + 1 with a copy from x

2



Value Numbering

Goal: Eliminate redundant computations

Find out if two variables have the same value at given program point
I In general undecidable

Potentially replace computation of latter variable with contents of the
former

Resort to Herbrand equivalence:
I Do not consider the interpretation of operators

I Two expressions are equal if they are structurally equal

This lecture: A costly program analysis which finds all Herbrand
equivalences in a program and a “light-weight” version that is often
used in practice.

3



Herbrand Interpretation

The Herbrand interpretation I of an n-ary operator ω is given as

I(ω) : T n → T I(ω)(t1, . . . , tn) := ω(t1, . . . , tn)

Especially, constants are mapped to themselves

With a state σ that maps variables to terms

σ : V → T

we can define the Herbrand semantics 〈t〉σ of a term t

〈t〉σ :=

{
σ(v) if t = v is a variable

I(ω)(〈x1〉σ, . . . , 〈xn〉σ) if t = ω(x1, . . . , xn)

4



Programs with Herbrand Semantics

We now interpret the program with respect to the Herbrand semantics

For an assignment
x ← t

the semantics is defined by:

Jx ← tKσ := σ [〈t〉σ/x ]

The state after executing a path p : `1, . . . , `n starting with state σ0
is then:

JpKσ0 := (J`nK ◦ · · · ◦ J`1K)σ0

Two expressions t1 and t2 are Herbrand equivalent at a program
point ` iff

∀p : r , . . . , `. 〈t1〉JpKσ0 = 〈t2〉JpKσ0

5



Kildall’s Analysis

Track Herbrand equivalences with a forward data flow analysis

A lattice element is an equivalence class of the terms and variables of
the program

The equivalence relation is a congruence relation w.r.t. to the
operators in our expression language.
For each operator ω, each eq. relation R, and e, e1, · · · ∈ V ∪ T :

e R (e1 ω e2) =⇒ e1 R e ′1 =⇒ e2 R e ′2 =⇒ e R (e ′1 ω e ′2)

Two equivalence classes are joined by intersecting them
R t S := R ∩ S := {(a, b) | a R b ∧ a S b}

⊥ = {(x , y) | x , y ∈ V ∪ T}
+ optimistically assume all variables/terms are equivalent

Initialize with > = {(x , x) | x ∈ V ∪ T}
+ at the beginning, nothing is equivalent

6



Kildall’s Analysis
Example

>

>

a := 2
x := a + 1

>

{[a, 2], [x , a + 1, 2 + 1]}

a := 3
x := a + 1

>

{[a, 3], [x , a + 1, 3 + 1]}

y := a + 1

{[x , a + 1]}

{[x , y , a + 1]}

7



Kildall’s Analysis
Transfer Functions

. . . of an assignment
` : x ← t

Compute a new partition checking (in the old partition) who is
equivalent if we replace x by t

Jx ← tK] R := {(t1, t2) | t1[t/x ] R t2[t/x ]}

8



Kildall’s Analysis
Example

x := 0
y := x + 1

>

⊥

x := x + 1

⊥

⊥

y := y + 1

⊥

⊥

9



Kildall’s Analysis
Example

x := 0
y := x + 1

>

{[x , 0], [y , x + 1, 0 + 1]}

x := x + 1

{[y , x + 1]}

{[x , y ]}

y := y + 1

{[y , x + 1]}

{[x , y ]}

10



Kildall’s Analysis
Comments

One can show that Kildall’s Analysis is sound and complete

Näıve implementations suffer from exponential explosion
(pathological):

I Because the equivalence relation must be a congruence size of
eq. classes can explode:

R = {[a, b], [c , d ], [e, f ], [x , a + c , a + d , b + c , b + d ],

[y , x + e, x + f , (a + c) + e, . . . , (b + d) + f ]}

In practice: Do not make congruence explicit in representation

Instead: Before analysis, scan program for all appearing expressions
(and subexpressions!) and only include those in the representation of
the equivalence classes

11



The Alpern, Wegman, Zadeck (AWZ) Algorithm

Incomplete

Flow-insensitive
I does not compute the equivalences for every program point but sound

equivalences for the whole program

Uses SSA
I Control-flow joins are represented by φs

I Treat φs like every other operator (cause for incompleteness)

I SSA compensates flow-insensitivity

Interpret the SSA data dependence graph as a finite automaton and
minimize it

I Refine partitions of “equivalent states”

I Using Hopcroft’s algorithm, this can be done in O(e · log e)

12



The AWZ Algorithm

In contrast to finite automata, do not create two partitions but a
class for every operator symbol

I Note that the φ’s block is part of the operator

I Two φs from different blocks have to be in different classes

Optimistically place all nodes with the same operator symbol in the
same class

I Finds the least fixpoint

I You can also start with singleton classes and merge but this will (in
general) not give the least fixpoint

Successively split class when two nodes in the class are detected
not equivalent

13



The AWZ Algorithm
Example

x := 0
y := 0

x := x + 1
y := y + 1

14



The AWZ Algorithm
Example

x0 := 0
y0 := 0

1

x1 := φ2(x2, x0)
y1 := φ2(y2, y0)

2
x2 := x1 + 1
y2 := y1 + 1

3

15



The AWZ Algorithm
Example

φ2 x1

+ x2 0 x0

1

φ2 y1

+ y2 0 y0

1

16



The AWZ Algorithm
Example

φ x1, y1

+ x2, y2 0 x0, y0

1

17



Kildall compared to AWZ

1

a0 := 2
x0 := a0 + 1

2
a1 := 3
x1 := a1 + 1

3

a2 := φ4(a0, a1)
x2 := φ4(x0, x1)
y0 := a2 + 1

4

18



Kildall compared to AWZ

+ y0 φ4 x2

φ4 a2 + x0 + x1

2 a0 3 a1 1

19



Kildall compared to AWZ

+ y0 φ4 x2

φ4 a2 + x0 + x1

2 a0 3 a1 1

20


